Traditional ML Models for ZKML

In this series of tutorial, we delve into the world of traditional machine learning models for ZKML. Despite the hype surrounding advanced AI techniques, traditional ML models often offer superior performance or sufficiently robust results for specific applications. This is particularly true for ZKML use cases, where computational proof costs can be a critical factor. Our aim is to equip you with guides on how to implement machine learning algorithms suitable for Giza platform applications. This includes practical steps for converting your scikit-learn models to the ONNX format, transpiling them to Orion Cairo, and deploying inference endpoints for prediction in AI Action.

Tutorials available in this series:

Linear Regression

Decision Tree

Last updated