Get up and running with Actions! In this quickstart you will learn the basics to get up and running with Actions and Giza Platform. You will create a Giza Workspace, initialize your first Action, generate a deployment and create executions with Actions Runs πŸš€

Before you begin, make sure you have all the necessary libraries installed:

$ pip install giza-actions
$ pipx install giza-cli

From your terminal, create a Giza user through our CLI in order to access the Giza Platform:

giza users create

After creating your user, log into Giza:

giza users login

Optional: you can create an API Key for your user in order to not regenerate your access token every few hours.

giza users create-api-key

To create Actions Runs you will need a Giza Workspace, create it executing the following command in your terminal:

giza workspaces create

Create your first Action

You can use our Giza CLI to initialize an Action project:

giza actions new <MY PROJECT NAME>

After submitting the required parameters you will get a directory with the following structure:

$ giza actions new mnist_example
$ cd example
$ tree
β”œβ”€β”€ README.md
β”œβ”€β”€ mnist_example
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ predict_cairo_action.py
β”‚   β”œβ”€β”€ predict_onnx_action.py
β”‚   β”œβ”€β”€ train_action.py
β”‚   └── utils.py
β”œβ”€β”€ pyproject.toml
β”œβ”€β”€ tests
β”‚   └── __init__.py
└── zero.jpg

This structure represents a ready-to-use Python project to work with Giza Actions based on MNIST Tutorial.

An example of how to define an action can be found in mnist_example/train_action.py. This script is responsible for creating your Action (workflow) for training your neural network and deploying the action on your Giza Workspace.

# mnist_example/train_action.py
import numpy as np
import torch
import torch.nn as nn
import torch.onnx
import torch.optim as optim
import torchvision
from giza_actions.action import Action, action
from giza_actions.task import task
from scipy.ndimage import zoom
from torch.utils.data import DataLoader, TensorDataset

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Neural Network Definition
input_size = 196  # 14x14
hidden_size = 10
num_classes = 10
num_epochs = 10
batch_size = 256
learning_rate = 0.001

class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.input_size = input_size
        self.l1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.l2 = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        out = self.l1(x)
        out = self.relu(out)
        out = self.l2(out)
        return out

# Task Definitions
def resize_images(images):
    return np.array([zoom(image[0], (0.5, 0.5)) for image in images])

@task(name="Prepare Datasets")
def prepare_datasets():
    print("Prepare dataset...")
    train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True)
    test_dataset = torchvision.datasets.MNIST(root="./data", train=False)

    x_train = resize_images(train_dataset)
    x_test = resize_images(test_dataset)

    x_train = torch.tensor(x_train.reshape(-1, 14 * 14).astype("float32") / 255)
    y_train = torch.tensor([label for _, label in train_dataset], dtype=torch.long)

    x_test = torch.tensor(x_test.reshape(-1, 14 * 14).astype("float32") / 255)
    y_test = torch.tensor([label for _, label in test_dataset], dtype=torch.long)

    print("βœ… Datasets prepared successfully")

    return x_train, y_train, x_test, y_test

@task(name="Create Loaders")
def create_data_loaders(x_train, y_train, x_test, y_test):
    print("Create loaders...")

    train_loader = DataLoader(
        TensorDataset(x_train, y_train), batch_size=batch_size, shuffle=True
    test_loader = DataLoader(
        TensorDataset(x_test, y_test), batch_size=batch_size, shuffle=False

    print("βœ… Loaders created!")

    return train_loader, test_loader

@task(name="Train model")
def train_model(train_loader):
    print("Train model...")

    model = NeuralNet(input_size, hidden_size, num_classes).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)

    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_loader):
            images = images.to(device).reshape(-1, 14 * 14)
            labels = labels.to(device)

            outputs = model(images)
            loss = criterion(outputs, labels)


            if (i + 1) % 100 == 0:
                    f"Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}/{len(train_loader)}], Loss: {loss.item():.4f}"

    print("βœ… Model trained successfully")
    return model

@task(name="Test model")
def test_model(model, test_loader):
    print("Test model...")
    with torch.no_grad():
        n_correct = 0
        n_samples = 0
        for images, labels in test_loader:
            images = images.to(device).reshape(-1, 14 * 14)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            n_samples += labels.size(0)
            n_correct += (predicted == labels).sum().item()

        acc = 100.0 * n_correct / n_samples
        print(f"Accuracy of the network on the 10000 test images: {acc} %")

@task(name="Convert To ONNX")
def convert_to_onnx(model, onnx_file_path):
    dummy_input = torch.randn(1, input_size).to(device)

    print(f"Model has been converted to ONNX and saved as {onnx_file_path}")

@action(name="Action: Convert To ONNX", log_prints=True)
def execution():
    x_train, y_train, x_test, y_test = prepare_datasets()
    train_loader, test_loader = create_data_loaders(x_train, y_train, x_test, y_test)
    model = train_model(train_loader)
    test_model(model, test_loader)

    # Convert to ONNX
    onnx_file_path = "mnist_model.onnx"
    convert_to_onnx(model, onnx_file_path)

if __name__ == "__main__":
    action_deploy = Action(entrypoint=execution, name="pytorch-mnist-action")

Now you are set to create your first Action deployment! Execute the Action file to deploy it.

python mnist_example/train_action.py

Your deployment is ready for executions! You can create Actions Runs directly from the Giza Workspace. To learn more about creating an Action Run check our linked guided overview.

To deploy the other actions in the mnist_example directory in your workspace, you must first create a model on the Giza platform. To better understand the process, please refer to our step-by-step tutorial.

What’s next?

Congrats! πŸŽ‰ Now that you’ve completed the Actions quickstart, check out our guides and learn how to do more specific things in our how-to-guides and tutorials. If you’re interested in learning more about Actions core concepts, grab a cup of coffee and take a look at our Conceptual Guides!

Last updated